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The existence of a global Liapunov functional for nonlinear evolutionary equa- 

tions in a Hilbert space is investigated as a continuation of paper [l]. The results 

obtained represent a generalization of the results of the theory of absolute stabi- 

lity [2, 31, for the systems with infinite dimensional phase space, and are used for 
investigation of the nonlocal stability and instability of nonlinear distributedsys- 

terns. The conditions of existence of the global Liapunov functional obtained are 

illustrated by an example of a nonlinear parabolic system defined in the interval 

[0, 11. The concept of a Liapunov functional was first introduced and used with 
success in [4]. 

1. Evolutionary equation8 fn a Hllbert ~pac8, Clo#r iv of non- 
linear operatora. Let H. V and U be the Hilbert spaces [5] over a field of real 

numbers with scalar products c,)~, <,)v and (,)rr, and zero elements fi,, 9, and 0, , 
respectively. We denote by H* and V* the Hilbert spaces conjugate to H and V [5], 
assume that V C H = HZ C V+, that the space V is dense in H and, that the imbed- 

ding v + H is continuous. Let A be a continuous nonlinear operator V -+ V* closedin 
the space H. Further,let B be a linear bounded operator U --f V* and @ (e) a nonlin- 

ear (generally speaking) operator H X R1 --f U, where RI denotes the real axis. 

We consider the following nonlinear evolutionary equation [6]: 

~“(t)=Az(t)-fB~(2(t),t) 

By the generalized solution of (1.1) in the interval (z, 2’) we understand the 
2 (t) E W (r, T; v) satisfying the equation 

T 

s K dS 0) 
z(t), 7 

> 
+ (AZ (9, 5 W> + (B@ (I (0, t), 4 (1)) 1 

dt = 0 

+ 

(1.1) 

function 

(1.2) 
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for any function (r, T) + V smooth in t and finite in the interval (T, 2’) . Here W (7, 

2’; V) is a Hilbert space of mappings y (t) : (T, 2’) -+ V such that I (t) E ~2 (r, T; v), 

I/’ (t) E La (T, T; V*), where y’ denotes a generalized derivative and <f, g), f E V*, 

g E V denotes the value of the functional f on the element g. 
Definition 1. Let 

P:H+H, q:U+H, r:U-+ U, a:U+V 

be linear bounded operators and p and r be symmetric operators 

(px, Y)H = (2, PI&t (9 v)JJ = <u, rv>(J (2, Y E H, u, v = VI 

We shall say that the operator @ : H x Rl --f U belongs to the class N = N (p,q, r, a) 
if the following conditions hold for this operator: 

(PX, X>H + 2 (Xv q @ (6 t)>, + (rQ, (x, t), @ (x, t)>u \< 0, x E H, t > 0 (1.3) 

and a functional w (x) continuous in the space H exists such that for every function 
x (t) E W (0, 2’; V) and for any interval (tl, tZ), tl < fZ the following inequality holds: 

(1.4) 

Note 1. The author of paper [‘I] named the conditions of the type (1.3) in the case 

of finite-dimensional spaces H and. U (with the sign reversed), the local relation con- 

necting x (t) with cf, (t) = @ (x, (t), t). The condition (1.4) is in fact equivalent to the 
condition which was called, in the above paper, the differential relation. 

Assumption 1. A unique general solution x (t) = r (t, t,, zO, CD), t E [to, Tj of 

(1.1) satisfying the condition x (to) = x0 exists for any x+H, any to, T> to and CP)E 

N 

2. EXirteAC6 Of the LiRpUAOV fUACtiOAA1 for A AOAliAaar svolu- 

tionrry equation, for the cla$r N of AOA~~AO~~ Opr&tOrr, Here as 
in [l], the essential part is played by the integral inequality 

CO 

s 
((Ru (t), u (r)jU + 2 (Y(U) (0, Qu (tb, + (PY (u) (0, Y 4~) WH - (2.1) 

u 

eIIU(t)-PY(U)(t)JPldt>O, u(OEL2(0, =J;U), &>O 

where y(u)(t) = y(t, 8, U) is a solution of (1. 1) for @(t)=u(t), and F is an arbitraryope- 
rator such that A + BF is an La -stable operator [l]. 

In [l] we have formulated a number of assumptions (assumptions 1 - 3) relating to the 
operators A and B . When these assumptions and the integral inequality all hold (for 

the L2-stable operator A the operator F can be assumed zero), a linear continuous 
symmetric operator M : H --f V will exist satisfying the equation 

<(M*A + A*M + P) E, q> = (LL*& q), L = (M*B + Q) K-‘, K*K = (2.2) 

A, Pi, q E V 

Theorem 1. Let the assumptions 1 - 3 of [1] hold for the operators A and B 

Let also the assumption 1 of the present paper hold and the function CII (x, t) satisfy the 
condition (1.4). Let finally the integral inequality (2.1) with the operators 

R=r+B*a, P=p, Q=q+lfZA*a (2.3) 
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hold for the linear bounded operators p, q and r , H + H, U -+ N, U -_, U ,. Here B+a 
and A *a are bounded operators and the operator F is such that the operator A + BF 

is La-stable [l]. Then the continuous functional 

V (z) = (Mz, “)H + w (r) (2.4) 

exists in the space H such that for any solution z (t) = t (t, to, zO, CD) of (1.1) and for 
any value of 4p , the inequality 

holds. 

If for the same CD E N (pr, 9, ra, a) = Nt,8, pc = p + eBH, rs = r + 8~, (EE 
and Euafe identity operators’in H and U), then for V (4 we have the following in- 
equality : ir 

y @ fir)) - v (z (6)) 2 s (8 II r (9 liH2 + 8 (I CD (t) I@9 dt , t1< tz (2.6) 
fr 

Proof. The inequality (2.5) is obtained from the following sequence of relations 
which are true by virtue of (1. I), (1.4) and (2.2) - (2.4) : 

tt tr 

1 X P(t))dt = 5 [tM*Az(t),z(t))+<M*B(D(t), z(t)> + <MS(~), AZ(~)>+ 
tl 

ofsr: (t), d(t)> + <Az (t), a@ (1)) + #a,(t), a@(t)> ] cEt = 
tr 

SK M* da:@) 
dt 

fl 
t1 

s + (kfz (t), 2 (t)> dt + W (z (t)) I 

fl 
tl = v (x (t)) 

I 
:: 

h 

Here and in what follows, we omit the indices accompanying the spaces in thescalarpro- 
ducts and norms, 

From the first relation of (2.2) we see that the properties of the operator M depend 
on the properties of the homogeneous linear equation 

d 
TY=AY (2.7) 

Let us denote by y (t, go) the solution of (2. ‘7) corresponding to the initial condition 
li (01 = YO. (Here we regard the solution in the same sense as that of (1.1) for (D s 0. 

The existence and uniqueness of this solution at t > 0 is guaranteed by the assumption 

1 of Cl]). 
Assumption 2. Let the space H *be decomposable into a direct sum ofsubspaces 

H, and H, defined by the following properties’: 
a) the solution y+ (t) = I, (t, go) of (2.5) satisfies for any y. E H, the condition 

lim+,y+ @I = fJ (2.8) 

b) for every u. E H, there exists a unique solution V_ (t) I=: II (t, go) of (2.5) de- 
fined in the interval (-W, 0) and satisfying the condition 

lim L+_-a, Y_ (t) = e (2.2) 
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We shall call the operator L positive, L > 0 (negative, L < 0) if (Lh, h> > 0 (<./A, 
IL) < 0). We have <oh, h> = 0 only for h = 0. 

Theorem 2. Let us assume that all the conditions of Theorem 1 and the Assump- 

tion 2 hold and that the operator p - LL * is of constant sign. Then the operator M 
will be sign-constant on the subspaces H_ and H+ . On H+ its sign will be the same 
as that of the operator p - LL*, and on H_ it will be the opposite. 

Proof. We assume, for definiteness, that p - LL* > 0. Let us consider the solution 
Y (t) g 0 of (2.7) defined in some interval (ti, tl)_ Then, taking (2.2) into account, we 
have ft. 

(MY(~), Y (t)> 1;: = 1 ((M*A + A*M) y (t),y ( t)) dt = (2.10) 

tr t1 

s <(P - LL*) y(t), Y (9) dt > o 
t1 

Let y. E H+ , and consider the relation (2.10) for the solution y (t, yo), t > 0. Direct- 
ing f to infinity and tr to zero and paying due regard to (2. S), we obtain 

00 

<MYo, ~0) = 
s ((P - LL*) Y (t), y(t)> dt > 0, Y,, # 0 (2.11) 
0 

Similarly, considering I/~ E H_ and t1 < ta < 0 we obtain from (2.10) (after passing 
to the limit with tZ + 0 and tl + --00 and taking into account (2.9) ), the proof of the 
theorem also for the subspace H_. 

From Theorems 1 and 2 we arrive at the following obvious result. 

Theorem 3. Let the conditions of Theorem 1 and 2 all hold, and p < 0. Then for 
any operator 4 E N (@ E N,. s) a functional (2.4) will exist for the equation (1.1) 
satisfying the inequality (2.5) (inequality (2.6)). When the functional w (CC) is nega- 

tive, the functional (2.4) will be positive on the subspace H_ , and when the functional 

W (5) is nonpositive, (2.4) will be negative on the subspace H+. 

3. A particular CIIC when p ir a zero operator, In this case (2.10) 
implies that M 6 0 on the subspace H+ and M >, 0 on the subspace H_. Let us inves- 

tigate the properties of the linear spaces L* (M) = {x [ 5 E H*, Ms = 0). In particu- 

lar, we wish to find out in which case these spaces are zero-dimensional. 

Assumption 3. The pair (A, Q*) of operators has the following property on the 

subspace H+: from Q*y (t, go) I= 6,-,, y, E H+, it follows that y. = eH. We notethat 
in the case of finite-dimensional spaces H and U the above property coincides with the 

property of identifiability of the pair (A, Q*) according to Kalman. 

Theorem 4. Let A be an L2 -stable operator [l]. Let also the conditions of Theo- 
rem 2 ( *) all hold for p = [0] , as well as the Assumption 3. Then the linear space 
L+ (M) consists of a single zero element, 

Proof. Let h be any arbitrary element of the space L+: Then the minimumvalue 
of the functional Ih [u] of the variational problem of Theorem 3 in [l] will be <Mh, 
h) = O.Since p = [0], the function u (t) EE 9 will be the only extremal element U“ (t) 

of this problem the existence of which is guaranteed by Theorem 3 of [l]. Moreover, the 

*) The operator F in the integral inequality can be assumed zero by virtue of the La- 
stability of the operator A , 
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following relations [l] will hold for the functions I/’ (t) = Y (t, ~3 and Y (t) = My0 (t) : 

A*Y, s = A$, B*Y+Q*y"=8, t>O (3.1) 

From (3.1) and the assumption 2 of [l] (which appears in the conditions of Theorems 3 
and 4). we obtain the following relations: y (t) = 6, Q*v” (t) = 6, U (0) = h = 6. 
The latter proves the theorem, 

From Theorems 3 and 4 follows 

Theorem 5, Let us assume that H = H+, ty (I) <,O and that the conditions of 

Theorem 4 are satisfied. Then for Eq. (1.1) for any @EN (IO], q, r, a) there existsthe 

negative Liapunov functional (2.4) for which the inequalities (2.5) and (2.6) hold. If 

W (4 6 - c II 5 llq, c> 0, then Y (5) d - con& II Aa. 

4, Exrmplt. We consider, as a simple but nontrivial example, the partial differ- 
ential equation in the interval [O, l] (of a parabolic type) 

au (s, 9 a% (s, t) 
-=a(S) a,a at - b(s)u(s, % O<s<f 

& I au 
as s=o = 0, as I s=l = tp (w (tN 

w(t) = G (u (s, t)) - \ g (s) u (s, t) as 
0 

(4.1) 

(4.2) 

fJ (4 >, a > 0.3 b (4 > b, a (s) E Cl (0,1) (4.3) 

4>0, Pl 6 0, Ps> 0 

Here G is a linear cont~uous functional acting in the space LB (0,1) of square sum-* 
mable functions defined in the interval (0, 11, and cp (lo) is the continuous function satis- 

fying the conditions given above, We shall consider solutions of Eqs. (4. l), (4.2) gene- 

ralized in the Sobolev sense. Namely,under a solution generalized in the interval t E 

i0, T] we understand the function u (s, t) satisfying the following conditions:, 

1 

SC1 u(s* t)j2+ as ( lau s, t)ps<m, O<t<T 

0 

(4.5) 

Here a / ds denotes a generalized derivative, or a derivative in the sense of the theory 
of astribution ; the following relation holds for any function g (s, t) satisfying the con- 

dition (4.5), smooth and finite in t in the interval IO, Tl : 

T 1 

u(Stt) b@)ug)]ds + (4.6) 

0 0 

In order to include the above equation in the framework of the proposed theory, we 
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must first write it in the form of (1.1). This requires adequate definition of the spaces 
H, CT and V , and of the operators A, B and CD . Secondly, we must introduce the ope- 

rators p, q, r and a defining the class N. As H , we shall use the space L2 (0, 1) of 
functions u = IL (s) square summable in the interval (0, 1) with the scalar product 

t 

<u, V>H = 
5 

u (s) v(s) ds (4.7) 
0 

(More accurately, the elements of the space P (0, 1) are not functions, but classes of 

functions [5, 61). 
As V , we take the space H1 (0, 1) of functions u (s), s E (0,i) satisfying the inequal- 

ity (4.5), with the scalar product [6] 

(4.3) 

We defining the operator A : V - V* as follows: we set for any functions u (s), u (s) E 

Further, let U = I?‘, where Rr is a unique straight line and the operator B : U + V* 

is defined in accordance with the equation 

(BE, v (s)) = = (1) b (1) (E E R’, 0 (s) = H1 (0, 1)) (4.10) 

(If we agree to denote the operators of multiplication by any function or the operator 0 

by [o], then according to this notation B = [a (I)8 (s - I)], where 6 (s) is the Dirac 

delta function). 

Finally we define the operator @ : P - ~1 as the following composition of opera- 

tors : 
@ : L2 3 u (s) + w = G (u (s)) --) cp (w) E R’ (4.11) 

When the operators A, B and CD are defined in this manner, the solution of the evolu- 

tionary equation (1.1) will coincide with the generalized solution of (4, l), (4.2) under- 

stood in the sense of (4.5), (4.6). Let us now define the operators p, q, r and a. By(4.4>, 
the function cp (w) satisfies the relations 

WUZ) fz 
(P2~--~(~))(W-- (P(w))<O, 1 q(h)dh = (q(w) w’dt (4.12) 

Wl) t 
From (4.2), (4.4) and (4.12) it follows that 0 E N (p, 9, r, a), where 

P = tw&*G, r= [I], q= --‘/Z(pI+/i2)G*r a=pG* (4.13) 

W (u 0)) = P [ q (A) dJ.1 w = G (u (s)) (4.14) 
0 

Next we shall explain what form inequality (2.1) assumes in the present example. 
We denote by x (p) a function of the complex variable p, defined by the relation 

X(P) = G (UI (s. P)). 

SL, 

a (s) m - (b (4 + P) Ul = 0 (4.15) 

au1 
as s=o=o* I au1 

_as _=I @=a+ iw) 
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(In the control theory this function is known as the transmission coefficient in the sys- 
tem (4. l), (4. Z), from the quantity cp to the quantity w [2]). Using (4.9)-(4.11),(4.13) 
and (4.15) and performing simple manipulations we can readily establish that the ine- 

quality (2.1) is equivalent to the following inequality well known in the theory of abso- 

lute stability 

Ra [(PSX (io) - i)(urx (io) - 1) + piox (ioN> s > 0 (0 = (- 00, + 00)) (4.16) 

Let us now analyze the assumptions 1 - 3 of [1] and the assumptions l- 3 of the pre- 

sent paper which appear in Theorems l- 5. In accordance with (4.3) and (4.9), the ope- 
rator A satisfies the inequality 

(4.17) 

Consequently [6] the assumption 1 of [1] on the existence and uniqueness of the solution 
will hold ; when b > 0 in (4.1’7), we have X> 0 and the operator A will be La-stable. 

The assumption 2 of [1] can, in view of (4.8) and (4.9), be formulated for the present 
example as follows. For any function f (s, t) such that II f (s, t) lIEI E L2 (0, co), there 
exists a unique generalized solution Y (s, t) of the equation 

au say N 

-at = Q 6) w - b(s)y+f(s,t)=O, t>o, as s=o l=o I , (4.18) 

satisfying the conditions ~0 1 

ss 
‘P (s, t) dsdt < 03 (4.19) 

00 

Ool a\y ss at (s, t) g (s, t) dsdt < 00, vg (s, t) E LB (0, ~0; ffl) 
00 

\($(s.t))ads<m, t>O 
0 

(4.20) 

The existence and uniqueness of the solution I (s, t) satisfying (4.19) follows from the 

inequality (4.17) and from Sect. 6.2, chap. 3 of [6]. We show the validity of (4.20) by 
considering the equation for Y (s, r) = ay (s, t) / as obtained from (4.18) by differ- 

entiating with respect to s. (We refer the function Y itself to the right-hand side of the 
equation for Y’.) We can show that the results of [S] mentioned above also apply to the 
equation obtained, and we therefore conclude that the function aY I as is La-continuous 

in t and (4.20) holds. The assumption 3 in the present example means that the solution 

u (s, t) of the equation 
&A 
at = a(s) $- - b (s) u, t>Oo, s E(O,i) (4.21) 

cm 
ali I al4 
as sy=“* as SC1 I = cp (O* s P(t)dt< 00 

0 
will have a generalized derivative au / 3s E La (0,1), La-continuous in t , provided 
that the initial conditions used are fairly smooth, e. g. u (s, 0) E H1 (0, I). The last as- 

sumption, as well as the previous one, can be proved by considering the equation for 
au / as and using the results of [S]. 

Let us now pass to the assumptions made in the present paper. Assumption 1 means 
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that a generalized solution of the boundary value problem (4.1) - (4.3) 

unique. This property is connected with the smoothness of the nonlinear 

the form of the operator G. Without going into a detailed investigation 

exists and is 
function cp and 

of this problem 
(about which an extensive bibliography exists, see e. g. [8]),we shall simply state that the 
assumption holds. 

Next we check the validity of the assumptions 2 and 3 (the latter is necessaryonlywhen 
.& = 0.) These assumptions concern a homogeneous linear equation (Eq. (4.21) with 

cp (t) = 0). According to [8], a solution u (s, t) of this equation can be written in the form 
of a series 

?J (s, t) = $ c/it F,(s) 
i=l 

(4.22) 

where F,, (s) are the eigenfunctions of the self-conjugate operator 

S (u) = (a (S) Y” (s) - b (s) u (s), s E (0, I), u’ (0) = u’ (1) = 0) (4.23) 

and &denote the corresponding eigenvalues. Assumption 2 will hold if h, # 0 , and W+ 
is the subspace of La (0, 1) stretched over the eigenfunctions corresponding to the nega- 

tive values of h,,while H- k the subspace stretched over the eigenfunctions correspond- 

ing to the positive h, (the number of the latter values is finite). 
When b > 0 , all eigenvalues are negative and H_ is empty. Let us consider the as- 

sumption 3 for this case. This assumption means that G (u, (s, t)) - 0, t > 0 implies 

u (s, t) z 0. From (4.22) we see that this will indeed occur if 

G (F, (s)) # 0 (n = 1, 2, .a.) 

Thus from Theorems 3 and 5 we obtain 

Theorem 6. Let the following statements holds for the boundary value problem 

(4.1) - (4.4.): 

I, 

1) for any initial function u0 (s) E La (0, 1) there exists a unique generalized so- 

lution u (s, t), t E 10, 00) which becomes equal to UC, (s) at t = 0; 

2) the operator G is a linear functional bounded on La (0, 1) satisfying the con- 
dition (2.24) and the condition that [p6 (s - 1)J G* and [ppa2 / as”1 G* represent the 

bounded mappings RI --, RI and RI .+ La , respectively. We note that if G (u) = 

\ g (s) u (s) ds, g (s) is twice integrable in the interval (0, 1) and lg” (s) 1 < 00, s E [O, 1 
then the latter conditions will also hold when p # 0; 

3) the inequality (4.16) holds ; 
4) the condition of stabilizability holds. A function p (x) cs .~,a (0, 1) exists such 

that all solutions of the linear equation (4.1) - (4.4) with ‘p (u) = \ b ii)_ U ts, t) ds tent 
exponentially to zero over the norm of La (0, 1). (1f.b > 0, then p (s) = 0.) 

Then a continuous functional V (U (s)) : L2 (0, 1) + R’ of the form 

v (u (s)) = i (Mu) (s) u (s) ds + P i cp (c) dc 
0 0 

will exist (A4 is a linear bounded operator L2 (0, 1) -+ Hl (0, 1)) which can be deter- 
mined with the help of Theorem 3 of [I.] and in which P is the quantity appearing in the 
condition (4. 16). The functional increases monotonously along the generalized solutions 
of the equations (4.1) - (4.4), provided that cp (I) satisfies (4.5) and also satisfies (2.6) 

if ‘p E N [P,, 4, rs, 4. 
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If p d 0 and b > 0, then V (u) \< - [ p 1 const 1 w I* < 0. The functional Y (u) will 

have positive values if p 2 0 and if some of the eigenvalues h, of the operator (4.23) 
are positive and none are zero. In the latter case we shall have the initial conditions 

under which the functions V (U (s, t)), 1 pw (t) 1 will be unbounded functions of time. 
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PRESSURE OF A PLANE STAMP OF NEARLY CIRCULAR CROSS SECTION 
ON AN ELASTIC HALF-SPACE 

PMM Vol.40, !‘I=” 6, 1976, pp, 1143 - 1145 

S. S. GOLIKOVA and V. I. MOSSAKOVSKII 
(Dnepropetrovsk) 

(Received July 25, 1974) 

An approximate method of solving the contact problem of impressing a plane 
stamp of nearly circular cross section into an elastic half-space is suggested . 

The friction of the contact surface is neglected. A numerical algorithm for the 

method is produced. An elliptical and rectangular stamps are considered asex- 

amples. 
There is no general method of solving the problems for stamps of nearly cir- 

cular cross section. Apart from the classical problem nf a plane elliptical 
stamp, the literature gives solutions for the problems of polygonal stamps, with 
each problem however requiring a different approach. An approximate solution 
for the problem of impressing a stamp of nearly circular cross section into an 

elastic half-space is given in [I]. The method makes it possible touse thesame 
approach to solve the contact problem for an arbitrary region of contact,and to 


